Theoretical and Percent Yield Worksheet

1. Write the equations for calculating % yield and % error in the boxes below:

% yield:

% error:

- 2. What does a % yield tell you?
- 3. What does a % error tell you?

Worked example:

Given the following equation, determine the percent yield of KCl if you react 34.5 g of K_2CO_3 with excess HCl and you are able to actually isolate 36.1 g of KCl. Also Calculate the % error.

$$K_2CO_3$$
 + HCl -----> H_2O + CO_2 + KCl

Steps:

- a) Balance the equation.
- b) Determine the theoretical yield of KCl if you start with 34.5 g of K_2CO_3 .
- c) Starting with 34.5 g of K_2CO_3 , and you isolate 36.1 g of KCl, what is the percent yield?
- d) Calculate the percent error for this reaction.
- a) Balanced equation: K_2CO_3 + **2**HCl -----> H_2O + CO_2 + **2**KCl
- b) $34.5 \text{ g K}_2\text{CO}_3 \times \underline{1 \text{ mole } \text{K}_2\text{CO}_3} \times \underline{2 \text{ mol } \text{KCl}} \times \underline{74.55 \text{ g KCl}} = 37.2 \text{ g KCl} \\ 138.21 \text{ g K}_2\text{CO}_3 & 1 \text{ mol } \text{K}_2\text{CO}_3 & 1 \text{ mol KCl} \\ \end{array}$
- c) % yield = $\underline{\text{actual yield}}$ x 100 so... % yield of KCl = $\underline{36.1 \text{ g KCl}}$ x 100 = 97.0% theoretical yield 37.2 g KCl
- d) % error = $\frac{1(\text{theoretical actual})}{\text{theoretical yield}} \times 100$ so... % error = $\frac{1(37.2-36.1)}{37.2} \times 100 = 2.96\%$

Now you try...

1. What is the % yield and % error if when 16.22 g of NH₃ is reacted with excess K_2 PtCl₄, 265.52 g of Pt(NH₃)₂Cl₂ is produced according to the following equation:

$$K_2$$
PtCl₄ + NH_3 -----> $Pt(NH_3)_2$ Cl₂ + KCl

√a) Balance the equation.

- b) Determine the theoretical yield of KCI if you start with 16.22 grams of NH₃.
- c) Starting with 34.5 g of NH₃, and you isolate 75.4 g of Pt(NH₃)₂Cl₂, what is the percent yield?
- d) Calculate the percent error for this reaction.

2. Given the following equation:

$$H_3PO_4 + 3 KOH -----> K_3PO_4 + 3 H_2O$$

- a) If $49.0 \text{ g of } H_3PO_4$ is reacted with excess KOH, determine the percent yield of K_3PO_4 if you isolate $49.0 \text{ g of } K_3PO_4$.
- b) Calculate the percent error for this reaction.

3. Given the following equation:

$$Al_2(SO_3)_3 + 6 NaOH -----> 3 Na_2SO_3 + 2 Al(OH)_3$$

a) If you start with 389.04 g of $Al_2(SO_3)_3$ and you isolate 212.60 g of Na_2SO_3 , what is your percent yield for this reaction?

b) Calculate the percent error for this reaction.

4. Given the following equation:

$$Al(OH)_3(s) + 3 HCl(aq) -----> AlCl_3(aq) + 3 H_2O(l)$$

a) If you start with 50.3 g of Al(OH)₃ and you isolate 39.5 g of AlCl₃, what is the percent yield and percent error?

5. Given the following equation:

$$H_2SO_4 + Ba(OH)_2 -----> BaSO_4 + H_2O$$

a) If 98.00 g of H₂SO₄ is reacted with excess Ba(OH)₂, determine the percent yield of BaSO₄ if you isolate 213.17 g of BaSO₄.

6. Given the following equation:

a) If you start with 82.4 g of CaCl2 and you isolate 82.4 g of Ca3(PO4)2, what is your percent yield

7. Given the following equation:

$$Cr(OH)_3 + 3HI -----> CrI_3 + 3H_2O$$

a) If you start with 50.3 g of Cr(OH)₃ and you isolate 39.5 g of CrI₃, what is the percent yield?