Theoretical and Percent Yield Worksheet 1. Write the equations for calculating % yield and % error in the boxes below: % yield: % error: - 2. What does a % yield tell you? - 3. What does a % error tell you? ### Worked example: Given the following equation, determine the percent yield of KCl if you react 34.5 g of K_2CO_3 with excess HCl and you are able to actually isolate 36.1 g of KCl. Also Calculate the % error. $$K_2CO_3$$ + HCl -----> H_2O + CO_2 + KCl Steps: - a) Balance the equation. - b) Determine the theoretical yield of KCl if you start with 34.5 g of K_2CO_3 . - c) Starting with 34.5 g of K_2CO_3 , and you isolate 36.1 g of KCl, what is the percent yield? - d) Calculate the percent error for this reaction. - a) Balanced equation: K_2CO_3 + **2**HCl -----> H_2O + CO_2 + **2**KCl - b) $34.5 \text{ g K}_2\text{CO}_3 \times \underline{1 \text{ mole } \text{K}_2\text{CO}_3} \times \underline{2 \text{ mol } \text{KCl}} \times \underline{74.55 \text{ g KCl}} = 37.2 \text{ g KCl} \\ 138.21 \text{ g K}_2\text{CO}_3 & 1 \text{ mol } \text{K}_2\text{CO}_3 & 1 \text{ mol KCl} \\ \end{array}$ - c) % yield = $\underline{\text{actual yield}}$ x 100 so... % yield of KCl = $\underline{36.1 \text{ g KCl}}$ x 100 = 97.0% theoretical yield 37.2 g KCl - d) % error = $\frac{1(\text{theoretical actual})}{\text{theoretical yield}} \times 100$ so... % error = $\frac{1(37.2-36.1)}{37.2} \times 100 = 2.96\%$ ### Now you try... 1. What is the % yield and % error if when 16.22 g of NH₃ is reacted with excess K_2 PtCl₄, 265.52 g of Pt(NH₃)₂Cl₂ is produced according to the following equation: $$K_2$$ PtCl₄ + NH_3 -----> $Pt(NH_3)_2$ Cl₂ + KCl **√a)** Balance the equation. - b) Determine the theoretical yield of KCI if you start with 16.22 grams of NH₃. - c) Starting with 34.5 g of NH₃, and you isolate 75.4 g of Pt(NH₃)₂Cl₂, what is the percent yield? - d) Calculate the percent error for this reaction. 2. Given the following equation: $$H_3PO_4 + 3 KOH -----> K_3PO_4 + 3 H_2O$$ - a) If $49.0 \text{ g of } H_3PO_4$ is reacted with excess KOH, determine the percent yield of K_3PO_4 if you isolate $49.0 \text{ g of } K_3PO_4$. - b) Calculate the percent error for this reaction. # 3. Given the following equation: $$Al_2(SO_3)_3 + 6 NaOH -----> 3 Na_2SO_3 + 2 Al(OH)_3$$ a) If you start with 389.04 g of $Al_2(SO_3)_3$ and you isolate 212.60 g of Na_2SO_3 , what is your percent yield for this reaction? b) Calculate the percent error for this reaction. ## **4.** Given the following equation: $$Al(OH)_3(s) + 3 HCl(aq) -----> AlCl_3(aq) + 3 H_2O(l)$$ a) If you start with 50.3 g of Al(OH)₃ and you isolate 39.5 g of AlCl₃, what is the percent yield and percent error? ## **5.** Given the following equation: $$H_2SO_4 + Ba(OH)_2 -----> BaSO_4 + H_2O$$ a) If 98.00 g of H₂SO₄ is reacted with excess Ba(OH)₂, determine the percent yield of BaSO₄ if you isolate 213.17 g of BaSO₄. ## **6.** Given the following equation: a) If you start with 82.4 g of CaCl2 and you isolate 82.4 g of Ca3(PO4)2, what is your percent yield ## 7. Given the following equation: $$Cr(OH)_3 + 3HI -----> CrI_3 + 3H_2O$$ a) If you start with 50.3 g of Cr(OH)₃ and you isolate 39.5 g of CrI₃, what is the percent yield?